The timescales of global surface-ocean connectivity

Coral reefs are increasingly exposed to elevated temperatures that can cause coral bleaching and high levels of mortality of corals and associated organisms. The temperature threshold for coral bleaching depends on the acclimation and adaptation of corals to the local maximum temperature regime. However, because of larval dispersal, coral populations can receive larvae from corals that are adapted to very different temperature regimes. We combine an offline particle tracking routine with output from a high-resolution physical oceanographic model to investigate whether connectivity of coral larvae between reefs of different thermal regimes could alter the thermal stress threshold of corals. Our results suggest that larval transport between reefs of widely varying temperatures is likely in the Coral Triangle and that accounting for this connectivity may be important in bleaching predictions. This has important implications in conservation planning, because connectivity may allow some reefs to have an inherited heat tolerance that is higher or lower than predicted based on local conditions alone.

Open access

Citation: Jönsson, B.F., J.R. Watson. 2016. The timescales of global surface-ocean connectivity. Nature Communications 7: 11239. doi:10.1038/ncomms11239.

The timescales of global surface-ocean connectivity

This website uses cookiesfor statistics and user experience.

This website uses cookies to improve your user experience, to provide a basis for improvement and further development of the website and to be able to direct more relevant offers to you.

Feel free to read ours privacy policy. If you agree to our use, choose Accept all. If you want to change your choice afterwards, you will find that option at the bottom of the page.

Cookies